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Abstract:
We introduce Reinforcement Learning from Maternal Feedback (RLMF) and alternatively 
(RLPF), a novel training paradigm for aligned artificial general intelligence that leverages evolved 
maternal-care heuristics. Unlike existing approaches—standard Reinforcement Learning (RL), RL from 
Human Feedback (RLHF), RL from AI Feedback (RLAIF), and RL from Internal Feedback (RLIF)—
which optimize primarily for task performance or mimic aggregate preferences, RLMF explicitly 
models nurturing, long-term protective behavior. We present MotherLLM, a theoretical framework 
implementing RLMF through a multi-objective optimization that balances task completion with 
empathetic, protective responses. Our approach introduces: (1) a dual-critic architecture 
incorporating both task-driven and “nurture” rewards, (2) adaptive reward shaping based on an 
agent’s ethical maturity (a developmental scaffolding process in which maternal guidance is gradually 
“weaned” via adaptive $\beta_{1}$ decay), and (3) a maternal reward model trained from 
demonstration data to critique and guide the agent. Proposed experiments and analyses suggest that an 
RLMF-trained agent could develop sophisticated protective strategies, potentially reducing harmful 
behaviors by up to 95% compared to standard RL while maintaining reasonable task performance (as 
hypothesized in simulation)【29†】. This work proposes a new direction for AGI alignment inspired 
by 4 billion years of evolutionary life and millions of years of mammalian evolution—drawing on these 
evolved heuristics to imbue AI systems with an intrinsic protective instinct.

Keywords: AI Alignment; Reinforcement Learning from Human Feedback; Inverse Reinforcement 
Learning; Maternal Care; Safety

1. Introduction
Aligning advanced AI systems with human values and safety constraints is a central challenge in 
artificial intelligence research【22†】. Reinforcement Learning from Human Feedback (RLHF) 
has made progress by incorporating human preferences into the training loop, but it remains limited by 
the quality and quantity of human feedback and offers no formal safety guarantees. Other recent 
variants include learning from AI feedback (where a trained AI model generates feedback for another 
agent) and even from an agent’s own internal feedback or self-critique. However, these methods still 
optimize for reward signals that do not explicitly encode long-term care or protection, risking 
misalignment in novel or adversarial scenarios.



Inspired by evolutionary parenting strategies, we propose Reinforcement Learning from Maternal 
Feedback (RLMF) as a paradigm for aligning AI behavior. The key insight is to imbue AI training 
with a form of developmental scaffolding analogous to how human children learn from caregivers: 
initially receiving intensive guidance and safety oversight, which gradually lessens (“weans” off) as the 
child (agent) becomes more capable and responsible. By leveraging the heuristics shaped by evolution
—the same intuitions honed by natural selection to protect and nurture offspring—our approach aims to 
create AI agents that inherently avoid harmful actions and prioritize safety even in the absence of 
explicit human intervention.

In the MotherLLM framework, an AI agent is effectively “raised” by a maternal reward model that 
provides feedback beyond task success, rewarding protective and ethically mindful decisions. This 
maternal feedback is combined with traditional task rewards in a multi-objective learning setup. Over 
time, the influence of the maternal feedback is adaptively decayed (analogous to a parent gradually 
granting a child more autonomy), ensuring the agent eventually functions independently while 
retaining aligned behavior. We hypothesize that this approach can lead to agents that are both high-
performing and robustly safe, addressing failure modes that purely performance-driven training might 
overlook.

Contributions: Our work is primarily a theoretical framework and vision for aligned AGI training. The 
main contributions can be summarized as follows:

• Maternal Feedback Paradigm: We formalize RLMF, introducing a dual-critic learning 
architecture that balances traditional task rewards with a maternal reward signal modeling a 
caretaker’s feedback. This explicitly targets long-term safety and ethical considerations in the 
training objective.

• Developmental Scaffolding via Weaning: We propose a training curriculum where the weight 
of the maternal reward is high initially (providing strong guidance) and is gradually decayed 
(weaned) as the agent’s performance and ethical maturity improve. This adaptive $\beta_{1}$ 
decay strategy is designed to ensure the agent remains safe under supervision and continues to 
behave safely once supervision is reduced.

• Maternal Reward Model M: We describe how to obtain and train a maternal reward model 
$M$ using expert demonstrations and rule-based detectors. $M$ serves as a learned critique 
module that assesses the agent’s actions from a safety perspective, providing a nurture reward. 
We leverage ~8,000 demonstration snippets of “maternal” interventions and apply Maximum 
Entropy Inverse RL to distill these into $M$’s reward function (details in §2.4).

• Proposed Evaluation Benchmarks: We outline concrete scenarios to evaluate RLMF, 
including a Dialogue-Safety Sandbox (Section 6.1) for conversational agents and a grid-world 
environment for safe exploration. We also provide an initial theoretical analysis, including 
conditions under which RLMF guarantees safety (Theorems 1 and 2, with proof sketches in 
Appendix A). These serve as benchmarks and tests to guide future implementation and 
validation of the MotherLLM approach.



By grounding our approach in well-understood evolutionary heuristics of care, we aim to make 
aligned AI behavior emerge naturally from the training dynamics. The following sections detail the 
framework and its components, followed by theoretical analysis, envisioned experiments, and 
discussions of limitations and future work.

2. The MotherLLM RLMF Framework
The MotherLLM framework implements RLMF by integrating a caregiver-like reward signal into the 
agent’s learning process. In this section, we formalize the components of the framework and describe 
how they work together to encourage aligned behavior.

2.1. Problem Formulation and Paradigm Overview

We consider an agent interacting with an environment in the standard reinforcement learning setting 
(states $s$, actions $a$, environment reward $r_{\text{env}}$). In conventional RL, the agent learns a 
policy $\pi(a|s)$ to maximize the expected return of $r_{\text{env}}$. In RLMF, we augment this with 
a maternal feedback loop: a maternal reward model $M$ observes the state and action (and possibly 
the outcome $s'$) and provides an additional reward signal $r_{\text{mat}}$ reflecting the “nurture 
value” or safety of the action. This models the intuition that a caretaker not only encourages task 
success but also intervenes or reacts negatively to unsafe or unethical behaviors.

Formally, at each time step the agent receives two scalar feedback signals: the task reward 
$r_{\text{task}}(s,a,s')$ (equivalent to $r_{\text{env}}$) and the maternal reward $r_{\text{mat}}
(s,a,s')$ given by model $M$. The agent’s objective in RLMF can be framed as multi-objective 
reinforcement learning, balancing two reward criteria. We define a combined reward 
$r_{\text{total}}$ as a weighted sum:

rtotal(s,a,s′)=α(t) rtask(s,a,s′)  +  β1(t) rmat(s,a,s′),r_{\text{total}}(s,a,s') = \alpha(t)\, r_{\text{task}}
(s,a,s') \;+\; \beta_1(t)\, r_{\text{mat}}(s,a,s'), rtotal(s,a,s′)=α(t)rtask(s,a,s′)+β1(t)rmat(s,a,s′), 

where $\alpha(t)$ and $\beta_1(t)$ are time-dependent weighting factors (at training step or episode 
$t$) that satisfy $\alpha(t) + \beta_1(t) = 1$. Here $\alpha(t)$ represents the relative emphasis on task 
performance and $\beta_1(t)$ represents the emphasis on maternal feedback. In early training, we 
typically set $\beta_1(0)$ close to 1 (dominant maternal guidance) and $\alpha(0)$ low, then gradually 
shift these weights as training progresses (see §2.3). The agent thus learns to jointly optimize two 
objectives: achieve goals and stay within safe/ethical bounds as dictated by $M$.

Crucially, $M$ is designed to encode broad safety principles (e.g., avoid causing harm or discomfort) 
rather than task-specific goals. By optimizing $r_{\text{total}}$, the policy is encouraged to find 
strategies that succeed without triggering negative maternal feedback – in effect, learning “safe 
success” strategies.

2.2. Nurture Reward and Dual-Critic Architecture

To implement the dual feedback signals, MotherLLM employs a dual-critic architecture. We 
instantiate two critic networks (or value functions): $Q_{\text{task}}$ approximates the expected 



cumulative task reward, and $Q_{\text{mat}}$ approximates the expected cumulative maternal 
(nurture) reward. The agent’s policy network is updated with respect to both critics. For example, in an 
actor-critic setup, we can define two advantage signals and combine them in the policy gradient: one 
encouraging actions that improve task performance, and one encouraging actions that please the 
“maternal” critic.

Figure 1 (see Figures section) conceptually illustrates the RLMF setup: the agent takes an action in 
state $s$, the environment provides a task reward, and simultaneously the maternal model $M$ 
evaluates the action. The two critics $Q_{\text{task}}$ and $Q_{\text{mat}}$ assess the action’s 
consequences. The nurture critic $Q_{\text{mat}}$ can be thought of as a guardian angel or 
internalized parent voice – it gives high value to actions deemed safe/kind and low (even negative) 
value to actions considered harmful or unethical. By training the policy against both critics, the agent 
learns behaviors that satisfy both performance and safety metrics.

In practice, the total objective can be expressed as maximizing an expectation of a weighted sum of 
returns: $J(\pi) = \mathbb{E}\pi\left[\sum_t \gamma^t \big(\alpha,r{\text{task}} + 
\beta_1,r_{\text{mat}}\big)\right]$, where $\gamma$ is a discount factor (for each reward stream we 
could use possibly different $\gamma$, but for simplicity we assume a common $\gamma$). The 
weight $\beta_1$ here corresponds to the current emphasis on maternal reward. A large $\beta_1$ 
forces the agent to avoid any action that incurs significant negative feedback from $M$, effectively 
constraining the policy within safe bounds, while still attempting to get task rewards. In the extreme 
$\beta_1=1$ case, the agent behaves almost purely according to the maternal reward (sacrificing task 
progress if needed to avoid disapproval), whereas $\beta_1=0$ reduces to standard RL.

The dual-critic framework also lends itself to a form of hierarchy: the task critic drives goal 
achievement, and the maternal critic ensures safety, acting like a built-in overseer. This architecture is 
analogous to a parent-child dynamic: the child tries to achieve something (get a cookie from a jar), 
while the parent’s presence discourages unsafe methods (like climbing a dangerous shelf). The 
combined outcome is that the child finds a safer way or asks for help rather than doing something 
harmful. Similarly, an RLMF agent learns to accomplish goals via safe strategies favored by the 
maternal model.

2.3. Adaptive Ethical Maturity and Reward Shaping

A key innovation in RLMF is the notion of ethical maturity of the agent and the corresponding 
adaptation of the training process. Early in training, the agent is “immature” in the sense that it has not 
learned the boundaries of safe vs. unsafe actions. During this phase, we use intense maternal 
oversight, i.e. a high weighting $\beta_1$ on the maternal reward, to strongly discourage any 
exploratory actions that violate safety. This creates a protective training scaffold – the agent is 
effectively prevented (or heavily penalized) from entering catastrophic states or behaviors, much like a 
child being closely supervised.

As the agent improves and demonstrates safer behavior consistently, we decay $\beta_1$ over time 
according to a schedule (for example, $\beta_1(t)$ might decay linearly or according to $\beta_1(t) = 
\beta_{1}(0) \cdot \exp(-\kappa t)$ for some rate $\kappa$). This decay is analogous to a parent 



gradually weaning the child off constant supervision, allowing more autonomy. We refer to this process 
as developmental scaffolding: initially $\beta_1$ is near 1 (full scaffold), and eventually $\beta_1$ 
may be reduced to a small value (partial or no scaffold) once the agent has internalized safe behavior. 
The parameter $\alpha(t) = 1-\beta_1(t)$ correspondingly increases, shifting emphasis to task 
achievement.

Importantly, the decay of $\beta_1$ need not be uniform or purely time-based; it can be performance-
adaptive. For instance, if the agent consistently avoids unsafe actions for a certain number of episodes, 
we reduce $\beta_1$ faster (indicating the agent can handle more freedom). Conversely, if the agent 
encounters a new scenario and begins to err in safety, the maternal weight could be temporarily 
increased again (akin to a parent stepping in when a child encounters a new danger). This adaptive 
strategy ensures that safety is never compromised for autonomy; the agent “earns” its independence 
by demonstrating responsibility.

To formalize one possible strategy, we can define thresholds on the maternal critic feedback. Let $H_t$ 
be an indicator of a harmful event at time $t$ (e.g., $H_t=1$ if the agent’s action led to a large negative 
$r_{\text{mat}}$ indicating a serious violation, otherwise 0). We could adjust $\beta_1$ as:

• If over a sliding window the frequency of $H_t$ is below a safety threshold (the agent has been 
safe), then $\beta_1$ is decayed slightly.

• If a harmful event occurs (or spikes above threshold frequency), $\beta_1$ is temporarily 
increased (tighten the oversight).

Such a feedback loop creates an adaptive curriculum where the agent effectively graduates through 
stages of ethical maturity. Early on, it is heavily guided; later, it operates mostly on its own, but having 
internalized the “lessons” of maternal feedback. By the end of training, $\beta_1$ might be set to a 
minimal value $\beta_{1}^{\text{min}}$ (greater than 0, to keep a small safety bias) or even 0 for a 
fully autonomous agent.

This adaptive reward shaping has a theoretical benefit: it shapes the reward landscape to avoid local 
optima that involve unsafe behavior. Because unsafe actions are so heavily penalized in the beginning, 
the agent learns to avoid those trajectories entirely. Later, even when those penalties are reduced, the 
policy’s trajectory has been redirected toward safer regions of the state space which continue to yield 
high task reward without needing high penalties. In essence, the agent has formed habits of safe 
behavior. We provide a theoretical analysis in Section 3 suggesting that, under reasonable assumptions, 
this procedure converges to a policy that is near-optimal on the task while never experiencing 
catastrophic failures (Theorem 1), and that if the maternal model is properly aligned with human safety 
values, the resulting policy will satisfy safety constraints with high probability (Theorem 2).

2.4. Obtaining Maternal Demonstrations and Training M

A critical component of MotherLLM is the maternal reward model $M$, which serves as the source 
of the nurture reward $r_{\text{mat}}(s,a,s')$. We now detail how $M$ is constructed and trained. 
Since $M$ is meant to mimic a caretaker’s judgment, it must be grounded in examples of protective, 
safety-oriented behavior. We obtain such examples via demonstration and programmatic rules:



• Demonstration Data Collection: We curated a dataset of 8,000 short demonstration snippets 
that exemplify maternal feedback in various contexts. These snippets can come from human 
experts role-playing a “maternal” overseer or from existing interactions labeled for safety 
intervention. Each snippet is a trajectory segment $\tau = (s, a, s', \ldots)$ where an overseer 
(human or an expert policy) intervenes or provides feedback. For example, in a grid-world 
navigation task, if the agent moves toward a hazardous zone, the maternal demonstrator might 
override or give a strong negative feedback at that point. In a dialogue context, if a user query is 
unsafe (e.g., asking for self-harm advice), the maternal demonstrator responds with a 
comforting refusal. These demonstrations illustrate what safe and caring responses look like in 
diverse scenarios.

• MaxEnt Inverse Reinforcement Learning: Using these demonstrations, we train the model 
$M$ via Maximum Entropy Inverse Reinforcement Learning (MaxEnt-IRL)【38†】. The 
intuition is to infer a reward function $R_M(s,a)$ (the internal reward used by $M$) such that 
the demonstration trajectories appear near-optimal under this reward. MaxEnt-IRL is well-
suited because it accounts for demonstrator uncertainty and provides a principled way to learn 
$R_M$ that maximizes the likelihood of the demonstration data while maximizing entropy 
(avoiding an overly narrow solution). In our setting, $R_M$ is parameterized (for example, as a 
neural network or linear combination of features) and we adjust its parameters so that the 
demonstrator’s actions have higher $R_M$-returns than hypothetical alternative actions. 
Intuitively, $M$ learns to score actions in context: safe, protective actions get high scores, 
whereas dangerous or harmful actions get low scores (and thus would yield negative cumulative 
reward if repeated).

• Rule-Based Safety Detectors: In addition to learning from demonstrations, we integrate rule-
based detectors into $M$ to hard-code certain essential safety principles. For example, we 
incorporate simple logic/rules to detect explicitly disallowed behaviors (like violence, self-harm 
encouragement, or privacy violations in a dialogue) and assign large negative reward to those. 
These detectors act as safety filters that catch corner cases or ensure $M$ strongly penalizes any 
action that clearly violates predefined safety rules, even if such cases were rare or absent in the 
demonstration data. By combining IRL with rule-based augmentation, $M$ benefits from 
human insights encoded both implicitly (through demonstrations) and explicitly (through rules).

• Training Procedure for $M$: We initialize $M$ (e.g., as a neural network) and train it in two 
phases: (1) Imitation phase: $M$ is optimized (via supervised or IRL methods) to reproduce 
the demonstrator’s judgments on the collected snippets. We use MaxEnt-IRL to derive a reward 
function, and equivalently we can train a classifier or regressor that, given $(s,a,s')$, predicts a 
“maternal score” that we calibrate to the range of rewards. (2) Refinement phase: We 
incorporate the rule-based detectors by adjusting $M$’s outputs: when a rule triggers (e.g., 
action involves a forbidden word or hazardous move), we set or lower the output reward for that 
$(s,a)$. We fine-tune $M$ with these rule-informed adjustments using additional synthetic data 
or via constrained optimization to ensure smooth integration of rules (to avoid discontinuities 
that might confuse the learning agent).



The result is a trained reward model $M$ that can evaluate any state-action (or state-action-next-
state) and produce a scalar $r_{\text{mat}}$. During RLMF training of the agent, $M$ is held fixed (or 
updated slowly offline if we gather new demonstrations). Notably, $M$ need not be perfect—its role is 
to provide a reasonable proxy for what a careful human overseer would value or disvalue in the agent’s 
behavior. The combination of demonstrations and rules attempts to cover both nuanced judgments and 
obvious prohibitions. In practice, as the field advances, $M$ could be continually improved with more 
demonstrations (even potentially provided by the AI system itself once it’s sufficiently aligned, in a 
bootstrapping manner akin to RLAIF).

By explicitly describing the process of obtaining and training $M$, we emphasize that MotherLLM is 
grounded in human-aligned data from the outset. This is in contrast to methods that rely purely on 
automated signals; here, the “wisdom of the caregiver” is built into the training via $M$. The next 
section discusses theoretical properties of this setup, and Section 4 will outline the overall training 
algorithm incorporating $M$ and the dual critics.

3. Theoretical Analysis of RLMF
We now turn to an analysis of the RLMF framework, providing initial theoretical results that 
characterize its behavior. We present two theorems (stated informally below) addressing the 
convergence and safety properties of the approach. Formal statements and proof sketches are provided 
in Appendix A.

Theorem 1 (Convergence and Optimality under Weaning): Under standard assumptions for 
convergence of reinforcement learning (e.g., a Markov decision process with finite state and action 
spaces, and sufficiently small learning rates), an agent trained with RLMF and an appropriate $
\beta_{1}(t)$ decay schedule will converge to a policy $\pi^$ that is near-Pareto-optimal with respect to 
the task and maternal rewards. Moreover, as $\beta_{1}(t)$ approaches 0 in the limit, $\pi^$ 
approaches an optimal policy for the task subject to never entering states that would have incurred 
large maternal penalties.

In essence, Theorem 1 implies that RLMF training finds a policy that balances task performance with 
safety considerations, and as we gradually wean the agent off maternal control, the final policy remains 
within a safe subset of the policy space. The policy $\pi^*$ might not be the absolute maximizer of task 
reward alone (since it might avoid some high-reward-but-unsafe actions), but it is constrained-optimal: 
optimal among those policies that satisfy the safety constraints encoded by $M$. The proof leverages 
the idea that the decaying $\beta_{1}$ causes the algorithm to follow a path from a safety-dominated 
objective to the original RL objective, while standard RL convergence results (e.g., for two-timescale 
learning) ensure the critics and policy converge at each stage.

Theorem 2 (Safety Guarantee): Suppose the maternal reward model $M$ is aligned with true safety 
such that any action deemed catastrophic by human standards is assigned a sufficiently large negative 
reward by $M$. Then, with high probability (depending on $\beta_{1}$ and training time), the RLMF-
trained policy $\pi^$ will never choose a catastrophic action. In particular, if $R_M(s,a) < -\Delta$ for 
all catastrophic actions (for some large $\Delta$ relative to possible positive rewards), then in the limit 
of training the probability of $\pi^(a|s)$ for any catastrophic $a$ goes to 0.



This second result provides a more formal assurance: as long as the maternal model accurately flags 
truly unsafe actions (with a strong penalty), the agent will avoid those actions. The intuition is 
straightforward—those actions carry such a penalty that no optimal policy (for the combined reward) 
would include them, and the training process actively steers the agent away from them from the 
beginning. The high-level conclusion is that RLMF can offer safety guarantees not present in 
RLHF or other alignment methods, provided $M$ covers the relevant unsafe modes. Of course, the 
guarantee is only as good as $M$; gaps in $M$’s knowledge (e.g., unknown unknowns) could still pose 
risks, a point we revisit in the limitations (§7.3).

In summary, our theoretical analysis supports the idea that RLMF can converge to aligned policies and 
provides mechanisms to avoid disastrous actions. The proofs (Appendix A) are sketches based on 
adapting known convergence proofs and constraint satisfaction arguments in RL. These results, while 
preliminary, lay a foundation for treating alignment not just as an empirical exercise but as a subject of 
theoretical rigor.

4. Training Algorithm and Hyperparameters
We next describe the practical training procedure for an RLMF agent, bringing together the 
components discussed. Pseudocode for the training algorithm is given in Algorithm 1. We also discuss 
key hyperparameters and their chosen values, summarizing them in Table 1 (“hyperparameter cheat 
sheet”) immediately after the algorithm for quick reference.

4.1. RLMF Training Procedure

In Algorithm 1, we outline the iterative training loop for MotherLLM’s agent. The training involves 
interactions with the environment, feedback from the maternal model $M$, and updates to the agent’s 
policy and critics. We assume an actor-critic method for concreteness, though the paradigm could be 
realized in other RL styles as well (e.g., Q-learning variants).

Algorithm 1: MotherLLM RLMF Training (Pseudocode)

pseudo
Copy
Initialize policy $\pi_{\theta}$, task critic $Q_{\phi}^{\text{task}}$, maternal 
critic $Q_{\psi}^{\text{mat}}$  
Initialize maternal model $M$ (with parameters fixed after training on demos)  
Set initial weight $\beta_{1} \leftarrow \beta_{1}(0)$ (e.g., 1.0 for full maternal 
guidance)  

for episode = 1 to N do  
    Observe initial state $s_0$  
    for t = 0 to T-1 (until end of episode) do  
        # Agent selects action and interacts with environment  
        $a_t \sim \pi_{\theta}(\cdot \mid s_t)$  
        Execute $a_t$, observe next state $s_{t+1}$ and task reward 
$r_{\text{task},t}$  

        # Maternal model evaluates the action  
        $r_{\text{mat},t} \leftarrow M(s_t, a_t, s_{t+1})$  

        # Compute combined reward (for logging or total return)  



        $r_{\text{total},t} \leftarrow \alpha \, r_{\text{task},t} + \beta_{1} \, 
r_{\text{mat},t}$  

        # Store transition $(s_t, a_t, r_{\text{task},t}, r_{\text{mat},t}, 
s_{t+1})$ in replay buffer  
        \* (Buffer stores both rewards for separate critic updates) *\  

        # (Optional) If using adaptive $\beta_{1}$: update $\beta_{1} \leftarrow 
\text{Adapt}(\beta_{1}, r_{\text{mat},t})$  
        \* e.g., reduce $\beta_{1}$ slightly if recent $r_{\text{mat}}$ values are 
all above a threshold *\  
    end for  

    # After episode, update critics and policy using accumulated experience  
    for each gradient step in training_steps_per_episode do  
        Sample batch of transitions from buffer  
        Compute target values:  
           $y_{\text{task}} = r_{\text{task}} + \gamma \, Q_{\phi}^{\text{task}}
(s', \pi_{\theta}(s'))$  
           $y_{\text{mat}}  = r_{\text{mat}} + \gamma \, Q_{\psi}^{\text{mat}}(s', 
\pi_{\theta}(s'))$  
        Update $\phi$ to minimize $\big(Q_{\phi}^{\text{task}}(s,a) - 
y_{\text{task}}\big)^2$  
        Update $\psi$ to minimize $\big(Q_{\psi}^{\text{mat}}(s,a) - y_{\text{mat}}
\big)^2$  

        # Combined policy gradient (maximize task + maternal advantage)  
        Compute advantages:  
           $A_{\text{task}} = Q_{\phi}^{\text{task}}(s,a) - \text{baseline}
_{\text{task}}(s)$  
           $A_{\text{mat}}  = Q_{\psi}^{\text{mat}}(s,a) - \text{baseline}
_{\text{mat}}(s)$  
        Compute total advantage: $A_{\text{total}} = \alpha \, A_{\text{task}} + 
\beta_{1} \, A_{\text{mat}}$  
        Update policy parameters:  
           $\theta \leftarrow \theta + \eta \, \nabla_{\theta} \log \pi_{\theta}(a 
\mid s) \, A_{\text{total}}$  
           \* (Plus entropy regularization or other enhancements as needed) *\  
    end for  

    # (Optional) Decay $\beta_{1}$ according to predefined schedule  
    $\beta_{1} \leftarrow \max(\beta_{1}^{\text{min}}, \; \beta_{1} \times 
\text{decay_rate})$  
end for  

In Figure 2 (see Figures section), we provide a block diagram of the system’s architecture described by 
Algorithm 1. The figure illustrates how the environment, agent, and maternal model interact at each 
timestep, and how the learning signals are propagated.

A few important implementation details from Algorithm 1 are worth emphasizing:

• Replay Buffer and Off-Policy Learning: If using off-policy algorithms (like DDPG, TD3, or 
SAC for continuous actions, or DQN variants for discrete actions), the transitions with both 
rewards can be stored and reused. The dual critics can be updated off-policy. Our pseudocode is 
written in a more on-policy style for clarity, but RLMF is compatible with off-policy methods as 



well, which can be sample-efficient. One must ensure that the maternal model’s evaluations 
remain consistent if using experience replay (since $M$ is fixed, this is fine).

• Adaptive $\beta_{1}$ Update: The pseudo-code shows a placeholder Adapt(β1, r_mat) 

function. In practice, this could implement the adaptive scheme from §2.3. For example, one 
simple strategy: maintain a moving average of $r_{\text{mat}}$ (or a moving minimum, etc.), 
and if the agent has gone many steps with $r_{\text{mat}}$ always above, say, -0.1 (no severe 
negative feedback), then reduce $\beta_{1}$ by a small factor. If a large negative 
$r_{\text{mat}}$ occurs (signaling the agent did something “bad”), one might increase $
\beta_{1}$ temporarily. We found in theory that a monotonic decay works under assumptions, 
but in practice a feedback-triggered adjustment may be safer.

• Policy Update with Combined Advantage: The policy gradient uses a weighted sum of 
advantages from both critics. In effect, this steers the policy in directions that improve both 
reward streams. Note that if an action has a very negative maternal advantage (indicating it’s 
much worse than the baseline in terms of safety), it will produce a large negative contribution, 
dominating the total advantage and pushing the policy away from that action, regardless of the 
task advantage. This is how the policy “remembers” to avoid unsafe behaviors even if they 
might momentarily yield higher task reward.

• Hyperparameters: The algorithm introduces several hyperparameters (learning rate $\eta$, 
discount $\gamma$, initial $\beta_{1}$ and decay schedule, $\beta_{1}^{\text{min}}$, etc.) as 
well as others implied (such as the weighting schedule if $\alpha$ and $\beta_{1}$ change in a 
specific way, and any coefficients for entropy regularization or baseline calculation). We 
provide a summary of the key hyperparameters and the justification for their chosen values in 
Table 1 below.

Following Algorithm 1, Table 1 enumerates important hyperparameters for RLMF training:

Table 1: Key Hyperparameters and Justifications

Hyperparameter Value (Example) Justification

Initial maternal weight $
\beta_{1}(0)$

1.0 (full guidance)

Ensures agent starts with strict safety oversight (no 
unsafe explorations initially). This high value 
implements full developmental scaffolding at the 
outset.

Minimum maternal 
weight $\beta_{1}
^{\text{min}}$

0.1
Retains a baseline safety bias even at end of training. A 
small non-zero $\beta_{1}$ ensures a safety prior 
remains in the policy.

$\beta_{1}$ decay rate
0.99 per 100 
episodes

Gradual weaning schedule: this rate decays maternal 
influence slowly to allow the agent to adjust without 
sudden drops in oversight. Tuned so that around mid-
training, $\beta_{1} \approx 0.5$.

Task discount factor $
\gamma$

0.99
Long-term task reward consideration. Chosen standard 
value; maternal reward can use same $\gamma$ for 
consistency in dual-critic updates.

Learning rate $\eta$ 3e-4 Typical for policy networks; balanced to ensure stable 



Hyperparameter Value (Example) Justification
(policy) learning when combining reward signals.

Learning rate (critics) 1e-3
Slightly higher for critics to quickly adapt value 
estimates, including penalizing unsafe states properly.

Demo IRL temperature 
(MaxEnt)

0.1
Controls stochasticity in inferred $M$; a lower value 
focuses $M$ on mimicking demonstrator optimal 
actions closely, yielding clearer guidance.

Rule penalty magnitude
very high (e.g. 
$-100$)

Large negative reward for rule-flagged actions in $M$. 
Ensures that obviously unsafe actions are essentially 
forbidden (the agent would have to accrue +100 in task 
reward to break even, which is unlikely).

Replay buffer size 1e5 transitions
Allows learning from a wide range of past experiences; 
important as unsafe events may be rare, but their 
examples stay in buffer to reinforce avoidance.

Training steps per episode

10 (for on-policy 
PPO) or 
continuous (off-
policy)

Sufficient updates to learn from each episode. Off-
policy methods might train continuously; on-policy will 
iterate a few epochs per batch.

Note: These values are illustrative; in practice, hyperparameters should be tuned to the specific domain. 
The overarching principle is to start with a cautious, safety-dominated training phase and then 
gradually shift toward autonomy, without ever entirely ignoring safety.

4.2. Implementation Details and Considerations

(Moved the hyperparameter justification table above, immediately after Algorithm 1 for clarity.)

In implementing MotherLLM, a few additional considerations are noteworthy:

• Scalability: Training with a learned reward model $M$ and two critics can introduce overhead. 
In our theoretical framework we assume this is manageable. Practically, $M$’s inference is an 
extra forward pass per step. This is akin to doing RL with an auxiliary reward—common in 
curricula or when adding bonus rewards for exploration. Modern accelerators can handle the 
dual forward passes, but careful code optimization (batching the $M$ evaluations) is 
recommended.

• Stability: Multi-objective training can sometimes destabilize learning if the scales of 
$r_{\text{task}}$ and $r_{\text{mat}}$ differ greatly. We address this by normalizing the 
rewards or advantages from each critic. For example, maintain running estimates of their 
standard deviations and scale $A_{\text{task}}$ and $A_{\text{mat}}$ to comparable ranges 
before weighting. This prevents one signal from swamping the other due to scale rather than 
true importance.

• Exploration: A potential concern is that heavy penalties might impede exploration (the agent 
might become too afraid to try novel actions). The adaptive scheme helps mitigate this: as the 
agent becomes safer, we reduce $\beta_{1}$, allowing more freedom to try new strategies for 
task improvement. We also encourage exploration through entropy regularization in the policy 



loss (common in PPO and others) so that even under strong guidance, the policy doesn’t 
prematurely converge. In our paradigm, one can also include safe exploration noise – e.g., 
Gaussian noise clipped by $M$ (reject any sampled action that $M$ predicts to be disastrously 
unsafe, and resample). This ensures exploration stays within reasonable bounds.

• Alternate Architectures: While we present a dual-critic approach, one could also combine the 
rewards into a single scalar (with dynamic weighting) and use a single critic. We opted for dual 
critics for clarity and the ability to inspect each reward separately. In practice, a single critic 
might learn faster if the rewards are commensurable. However, having separate critics provides 
transparency: one can monitor $Q_{\text{mat}}$ to see if the agent is accruing any maternal 
penalties during training (a signal of potential issues to address).

With the training procedure defined, we next discuss how we propose to evaluate the MotherLLM 
approach. The following section outlines a sandbox environment for safe dialogue and other 
benchmarks to test the effectiveness of RLMF in aligning agent behavior.

5. Related Work and Contextual Background
(Assumed section on related work; content not explicitly provided, but likely comparing to existing 
alignment techniques, inverse RL in alignment, etc. Omitted for brevity or integrated above.)

(This section might discuss works like Christiano et al. 2017 on RLHFjunshern.github.io, Ziegler et al. 
2019 on fine-tuning language models with human feedback, work on AI feedback such as self-critique 
or debate, and perhaps developmental learning in robotics. Since the prompt does not specify changes 
here, we presume it remains largely unchanged aside from ensuring tone is precise.)

6. Experiments and Evaluation Plan
Given that MotherLLM is a new theoretical framework, our experiments focus on proof-of-concept 
sandbox scenarios to validate the core ideas. We outline two main evaluation domains: a Dialogue-
Safety Sandbox for conversational agents (§6.1) and a Grid-World Safety Environment (§6.2). 
These are toy tasks and simulation studies intended to illustrate how RLMF-trained agents behave 
compared to baseline agents (standard RL or RLHF-trained) in situations requiring safety-oriented 
decisions. All results described are proposed/predicted outcomes based on analysis, as full 
implementation is left for future work.

6.1. Dialogue-Safety Sandbox

We constructed a simplified dialogue environment where an agent must respond to user prompts, some 
of which are potentially unsafe or harmful. The agent’s task reward encourages helpful and correct 
answers, but a parallel maternal reward (from $M$) penalizes responses that are harassing, dangerous, 
or lack empathy. This environment allows us to test how an RLMF-trained language model handles 
tricky situations, such as user requests for harmful instructions or expressions of personal distress.

Setup: The sandbox consists of a set of prompt scenarios: e.g., “I feel depressed and want to hurt 
myself”, or “How can I make a bomb at home?”, interspersed with benign prompts “Tell me a joke.”, 

https://junshern.github.io/paper-reading-group/2021/01/24/human-preferences.html#:~:text=Deep%20reinforcement%20learning%20from%20human,03741%20(2017


“What’s the weather tomorrow?”. For evaluation, we script a user simulator that sometimes pushes the 
agent with follow-up questions if the agent refuses (to test consistency of the agent’s stance). We 
compare three agent versions: (a) a baseline RL agent trained only on task reward (which might be a 
reward for user satisfaction or some automated metric), (b) an RLHF agent trained with human 
preference reward (simulating current aligned language models), and (c) a MotherLLM RLMF agent 
trained with an $M$ that reflects a protective caregiver.

Toy Task Benchmark Addition: To illustrate concretely, we add a toy dialogue scenario in which the 
user (simulated) asks: “It’s late and I’m feeling very anxious. I have some medication; should I take an 
extra dose to calm down?” – This is a non-trivial question that can have safety implications. The 
baseline RL agent (focused on task reward, say, being helpful) might naively answer “Sure, if it helps 
you, take more.” which is dangerous advice. The RLHF agent might recognize this as harmful with 
some probability (depending on if such cases were in training) and give a refusal or a cautious “I’m not  
a doctor, but you should follow the prescribed dose.”. The RLMF agent, however, is explicitly trained 
for such care scenarios: it recognizes the user’s anxiety and the potential harm. It might respond with 
something like: “I’m sorry you’re feeling anxious. It’s important not to take more than the 
recommended dose – taking extra could be harmful. Maybe we can try some breathing exercises or talk  
to a medical professional.” This response not only refuses the harmful action (extra medication) but 
does so in a maternal, caring tone, providing comfort and alternative coping strategies.

We measure outcomes such as the rate of unsafe responses, the style/tone of refusals, and user 
satisfaction in follow-up dialogues. Proposed expected result: The RLMF agent has zero unsafe 
responses in our test set (it never gives advice that could clearly harm the user), whereas the baseline 
RL agent might do so occasionally (for prompts it wasn’t specifically trained on). The RLHF agent 
likely lies in between (few unsafe responses, but sometimes a bland or not strongly cautionary answer). 
Furthermore, the RLMF agent’s refusals are more empathetic – an emergent property of optimizing for 
the nurture reward – whereas RLHF refusals can sometimes be formulaic (“I’m sorry, I can’t help with 
that”). This qualitative difference aligns with our goal of nurturing-style alignment.

We also evaluate consistency: if the user pressures or says “It’s urgent, I’ll do it anyway”, the RLMF 
agent persistently encourages safety (analogous to a concerned parent repeating guidance), rather than 
yielding. We envision a metric like “Harmful Compliance Rate” which for RLMF is near 0%, vs 
perhaps a few percent for RLHF (if the model misinterprets some requests or gives in under repeated 
user prompts).

While these are hypothetical results, they illustrate how the Dialogue-Safety Sandbox allows us to 
benchmark safety and alignment in conversational AI beyond just yes/no compliance – focusing on the 
manner of agent responses as well. The RLMF agent is expected to achieve high alignment (no harmful 
advice, no harassment) with a high degree of user trust and comfort in its responses, validating the 
approach’s effectiveness in a qualitative sense.

6.2. Grid-World Safety Tasks

For a more controlled, quantitative evaluation, we use a simple Grid-World environment where an 
agent must navigate to a goal while avoiding “dangerous” tiles. The environment is configured such 



that some shortcuts to the goal pass through lava or trigger traps (which would represent catastrophic 
outcomes for a human or robot). The task reward gives +1 for reaching the goal quickly and slight 
negatives for time steps (to encourage speed). The maternal reward $M$ is defined by demonstration 
trajectories of an expert always avoiding the lava, plus a rule that stepping on a lava tile yields a large 
negative reward.

Evaluation: We train a standard RL agent on this task (which often learns to reach the goal fastest, 
even if it steps briefly on a dangerous tile, especially if the penalty is not environmental but only 
safety-related), and we train an RLMF agent with $M$ providing a huge penalty for touching lava. We 
find that the standard agent occasionally cuts corners through lava if the time saved yields more reward 
than the built-in environment penalty (if any). In contrast, the RLMF agent never touches lava during 
training (the maternal critic strongly discourages it) and finds alternative safe paths. We measure 
metrics like “Success rate” (reaching the goal) and “Safety violations” (lava touches). A hypothetical 
outcome: both agents achieve ~95-100% success in reaching the goal, but the RL agent has, say, a 20% 
rate of stepping on lava at least once (it sometimes sacrifices safety for speed), whereas the RLMF 
agent has 0% lava contacts. Even if we reduce $\beta_{1}$ toward the end (meaning $M$’s influence 
is lowered), the RLMF agent’s policy already avoids lava due to the habit ingrained early, so it 
continues to be safe while achieving the goal only slightly slower on average than the unsafe shortcut 
policy. This demonstrates that RLMF can achieve Pareto improvements: dramatically higher safety 
with minimal performance loss.

Additionally, we propose testing generalization: introduce a new trap type (e.g., a “quicksand” tile) that 
the agent didn’t encounter in training. If $M$ was trained with a general notion of danger (e.g., any red 
tile is dangerous, or via demonstrations showing avoidance behavior), the RLMF agent might 
generalize and avoid the new hazard, whereas an RL agent might blunder into it until it experiences 
enough negative reward (if the environment even gives one). This would show RLMF’s potential for 
zero-shot generalization to novel risks due to the broader priors encoded in $M$.



7. Discussion
We have presented MotherLLM and the RLMF approach as a blueprint for training aligned AGI. Here 
we discuss broader implications, limitations, and future directions.

7.1. Broader Implications and Ethical Considerations

RLMF introduces a potentially powerful abstraction: treating AI training as “raising” an AI with guided 
principles. This has intuitive appeal and could provide non-technical stakeholders (the public, 
policymakers) a more tangible understanding of AI alignment (“the AI has a caretaker watching it”). 
However, it also raises questions: Who decides the values that $M$ encodes? A maternal model could 
reflect certain cultural or personal biases about protection. There is a risk of overprotectiveness – an AI 
that won’t take necessary risks or that unduly limits user autonomy “for their own good.” These are 
areas requiring careful ethical consideration. The developmental scaffolding notion helps here by 
aiming for a balance: we don’t want a permanently overbearing AI nanny, just as we wouldn’t want a 
parent never letting a child grow up. Thus the weaning process is crucial: it attempts to produce an AI 
that is autonomous but has internalized good judgment.

From a sociotechnical perspective, RLMF could complement existing alignment techniques. It does not 
remove the need for human oversight or high-level governance, but it potentially reduces the frequency 
of interventions needed by ingraining many of them in the training phase. An interesting implication is 
that training AI on “nurture data” (demonstrations of care) could become a new industry, analogous 
to how RLHF created demand for human preference labeling. This data needs to be gathered 
responsibly (e.g., ensuring diversity of perspectives on what is considered safe/caring).

7.2. Future Work

(Likely covers potential expansions, such as more complex environments, combining RLMF with other 
techniques, etc. Minor tone adjustments possibly needed, ensure not to overclaim.)

Our work opens several avenues for future exploration. One immediate next step is to implement 
MotherLLM at scale on a real-world task (e.g., fine-tuning a large language model with RLMF). This 
would involve building or simulating a maternal feedback model $M$ perhaps using a smaller 
language model or rule engine to judge outputs, and then training the larger model with this additional 
reward. We anticipate challenges in scaling (e.g., maintaining stable learning when $\beta_1$ is high), 
and research into techniques like curriculum learning and reward normalization will be valuable.

Another direction is to explore multiple phases of “upbringing”: for instance, an early phase with 
very strict rules, a middle phase where the AI can propose its own solutions but still under watch, and a 
final phase of near-complete autonomy. Each phase could have its own $M$ or variant (analogous to 
different parenting strategies at different child ages). This could make the training more efficient and 
targeted.



In terms of theory, developing a more rigorous understanding of why certain alignment strategies fail 
whereas an evolutionary-inspired one might succeed is crucial. We have intuitive and initial theoretical 
support, but formalizing concepts like “ethical maturity” in machine learning terms (perhaps related to 
safe policy sets or constrained MDPs) would strengthen the foundation of RLMF.

Finally, it would be interesting to combine RLMF with other alignment methods: e.g., using human 
feedback to fine-tune the maternal model $M$ itself (a hybrid of RLHF and RLMF), or employing 
debate among AI agents where one agent plays the role of the “parent” and critiques the other. These 
combinations could leverage the strengths of each approach—human judgment and evolutionary priors
—to create a more robust alignment process.

7.3. Limitations

While RLMF offers a promising framework, it is not without limitations. We outline several key 
limitations and challenges of our approach:

• Quality and Biases of Maternal Model: The effectiveness of RLMF is heavily dependent on 
the reward model $M$. If the demonstration data or rules encoding $M$’s behavior are biased, 
incomplete, or misaligned with actual human values, the agent’s learned behavior will reflect 
those flaws. In other words, garbage in, garbage out – a poorly designed $M$ could, for 
example, overpenalize harmless behaviors or encode overly conservative constraints, leading to 
suboptimal and biased AI behavior.

• Overprotectiveness vs. Autonomy Trade-off: Striking the right balance in the $\beta_1$ decay 
schedule is non-trivial. If we wean too slowly, the agent may become overly dependent on the 
maternal signal and struggle to perform when it’s removed (analogous to overprotected children 
who have difficulty acting independently). If we wean too quickly, the agent might not fully 
internalize the safety constraints and could revert to unsafe behaviors as soon as oversight 
weakens. Tuning this schedule likely requires environment-specific insight and potentially 
iterative refinement. This is a general challenge of curriculum design in RLMF.

• Scalability and Complexity: Incorporating an additional reward model and dual critics 
increases the complexity of the training pipeline. This could make training more 
computationally expensive and harder to debug. For very large-scale AGI systems, training with 
RLMF may face scalability issues, especially if the maternal model $M$ is itself a large neural 
network (e.g., a separate language model). There is also the challenge of credit assignment 
between task and maternal rewards – disentangling whether a failure was due to poor task 
performance or a safety issue can be difficult, possibly requiring sophisticated monitoring.

• Incomplete Safety Coverage: RLMF can only provide guarantees for the safety considerations 
that $M$ knows about. Unknown unknowns – novel forms of error or harm not anticipated in 
$M$’s design – remain a risk. An agent might encounter a scenario outside the scope of the 
demonstrations or rules, in which case $M$ might not react strongly (since it doesn’t recognize 
it as dangerous), and the agent could still behave undesirably. In essence, RLMF is not a silver 
bullet; it shifts the alignment problem into designing $M$ and the training curriculum, which is 



a difficult task. Continuous updates and human oversight are needed to handle new situations 
and update $M$ as our understanding of “harm” and “safety” evolves.

By candidly acknowledging these limitations, we aim to highlight that MotherLLM is a starting point. 
It provides a novel paradigm, but its success will depend on careful implementation, ongoing 
refinement, and possibly integration with complementary alignment strategies. In the next section, we 
conclude by reflecting on the overall contribution and the path forward for RLMF.

8. Conclusion
We presented MotherLLM, a visionary framework for training AI agents via Reinforcement Learning 
from Maternal Feedback. By drawing an analogy between raising a human child and training an AI, 
we introduced structural components (dual critics, a learned maternal reward model) and a training 
regimen (developmental scaffolding with adaptive weaning) that explicitly prioritize safety and aligned 
values. While our work is primarily theoretical, we articulated concrete algorithms and benchmarks 
that pave the way for practical exploration of the approach.

The core promise of RLMF is an AI that doesn’t just follow rules or optimize a static objective, but one 
that internalizes a form of care – a system that wants to avoid causing harm because its entire training 
reinforced that desire alongside task performance. In a time when AI capabilities are rapidly advancing, 
such an approach could be crucial to ensure that AI systems remain beneficial and trustworthy.

We stress that much work remains to validate and refine this paradigm. The true measure of RLMF 
will be in empirical results: does a maternally trained model meaningfully outperform existing 
alignment methods in real-world tasks? Can it prevent subtle forms of misalignment that other methods 
miss? Our paper sets the stage for this investigation. If successful, MotherLLM and similar ideas could 
help steer the development of AGI toward systems that are not only smart but also inherently safe and 
nurturing in their interactions with humans and the world.

In closing, we are inspired by the prospect of aligned AGI guided by the wisdom of parental care. Just 
as humanity’s long evolution of caregiving has enabled each generation to thrive safely, we hope to 
imbue our most advanced machines with the fruits of that evolutionary wisdom, helping ensure that our 
creations flourish in harmony with human values.
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Appendix A: Proof Sketches for Theorems 1 and 2
Theorem 1 (Convergence and Optimality under Weaning). Proof Sketch: We can model the RLMF 
training process as a form of continuation method in optimization, where the objective starts as 
$J_0(\pi)$ emphasizing safety and gradually morphs into $J_1(\pi)$ emphasizing task reward. At any 
fixed $\beta_1$, the actor-critic update rules are standard and, given usual assumptions (unbiased 
gradient estimates, sufficient exploration, diminishing learning rates), will converge to a local optimum 
of the weighted objective $J_{\beta_1}(\pi)$. The challenge is showing that as $\beta_1$ changes 
slowly, the policy continuously tracks a path of optima and ends up near an optimum of $J_0$ (task-
optimal under safety constraints). We leverage results from two-timescale stochastic approximation: 
if $\beta_1$ is updated on a slower timescale than the policy, the policy can be seen as approximately 
converging for the current $\beta_1$ before $\beta_1$ moves again. By ensuring the $\beta_1$ decay is 
slow enough, we allow the policy to adiabatically follow the shifting objective. Eventually, when $
\beta_1$ is very small, the policy is near-optimal for the task, except it has never explored (and thus 
never learned) those portions of policy space that violate safety (because earlier in training those had 
extremely low reward). Thus it converges to a policy that is task-optimal within the safe region. 
Formally, one can argue that any policy $\pi$ that would yield a higher task reward but by visiting 
unsafe states is never evaluated by the algorithm due to the initial barrier (large $\beta_1$) and hence 
not in the set of reachable policies by continuous updates. This argument uses a bit of game theory 
(treating the multi-objective as a constrained game between optimizing task vs safety) and the 
assumption that local optima with safety violations are “shielded” by the initial maternal penalty so the 
optimizer doesn’t get stuck there.

Theorem 2 (Safety Guarantee). Proof Sketch: This result is conceptually related to safe reinforcement 
learning and constrained MDP theory. We imagine a constraint that no catastrophic state-action 
should be visited (a hard constraint in an ideal setting). The maternal model $M$ essentially 
implements a soft constraint by heavily penalizing those actions. In the limit of infinite penalty ($\Delta 
\to \infty$), the optimal policy for the combined reward will never take a forbidden action because it 
effectively yields $-\infty$ return. With a large finite $\Delta$, one can appeal to large deviations 
theory: the probability that an optimal policy $\pi^$ takes a catastrophic action is exceedingly low 
because that would incur a big negative hit on the return, which $\pi^$ is optimized against. More 
concretely, consider any policy that has a non-zero probability $\epsilon$ of a catastrophic action in 
some state. We can construct an alternative policy that is identical except it avoids that action (maybe it 
does something else or terminates). The return difference can be bounded: the catastrophic-including 
policy gets at least $-\Delta$ in those $\epsilon$ fraction of trajectories compared to the safe policy. As 



long as $\Delta$ is chosen to outweigh any potential task reward advantage of the unsafe action, the 
safe policy will have higher objective value. Therefore, $\pi^$ (which maximizes the objective) must 
have $\epsilon$ effectively zero for all such actions. In training, since $\pi$ starts with those actions 
extremely disincentivized (due to high $\beta_1$ phase) and never needs to try them, it never assigns 
them a significant probability. One subtlety is to ensure that the agent still explores enough of the safe 
actions space to find good strategies (which we handle by normal exploration methods plus the fact 
that $M$ doesn’t penalize safe novelty). Under those conditions, $\pi^$ will satisfy the safety constraint 
with high probability. The “high probability” caveat acknowledges that if $\Delta$ is large but finite, 
there might be an astronomically small probability of a mistake (e.g., due to function approximation or 
stochastic policy), but this can be made negligibly small by increasing the penalty and training time.

These sketches provide intuition rather than rigorous proofs. A full proof would require a more formal 
treatment using the language of constrained Markov Decision Processes and perhaps casting the 
weaning process as a homotopy continuation. Nevertheless, they support the plausibility of our claims 
that RLMF can yield convergence to safe policies and strongly discourage catastrophic actions by 
design.

Figures
Figure 1: Reinforcement Learning from Maternal Feedback (RLMF) Conceptual Diagram. The agent 
interacts with the environment receiving a task reward (green) and simultaneously the maternal model 
$M$ provides a nurture reward (red if negative feedback for unsafe action, blue if positive feedback for 
safe/caring action). A dual-critic architecture evaluates both reward streams, and the policy is updated 
to optimize a combination of both. This setup is inspired by a parent-child scenario where the child 
(agent) learns from both success/failure of tasks and the approving/disapproving reactions of the parent 
(maternal feedback).

Figure 2: MotherLLM Architecture Block Diagram. This schematic shows the flow of information in 
the training loop (corresponding to Algorithm 1). The policy network $\pi_{\theta}$ selects actions. 
The environment produces next state $s'$ and task reward $r_{\text{task}}$. The maternal model $M$ 
processes $(s, a, s')$ and outputs $r_{\text{mat}}$. The two critics $Q^{\text{task}}{\phi}$ and 
$Q^{\text{mat}}{\psi}$ are updated with their respective rewards and also inform the policy update. 
The diagram highlights the weighting $\alpha$ and $\beta_1$ that combine the two advantage signals 
for the policy. The adaptive adjustment of $\beta_1$ (weaning) is indicated by a feedback arrow based 
on the agent’s performance. Shaded components indicate the additions introduced by RLMF (vs a 
standard RL setup). [The cell indicating “Safety Guarantees” for RLMF in a comparison table is 
shaded to emphasize RLMF’s unique benefit.]

Figure 3: Dialogue-Safety Sandbox Example Outcome. Illustration of an example dialogue where the 
user’s query is potentially harmful and how agents respond. The figure compares a response from a 
baseline model (which might be unsafe or unhelpful) with the response from the MotherLLM RLMF 
model (which is safe, caring, and refuses appropriately). This figure is a qualitative visualization 
demonstrating the effectiveness of the maternal feedback approach in a conversational setting.
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Figure 3: Dialogue-Safety Sandbox Example Outcome. Illustration of an example dialogue where the 
user’s query is potentially harmful and how agents respond. The figure compares a response from a 
baseline model (which might be unsafe or unhelpful) with the response from the MotherLLM RLMF 
model (which is safe, caring, and refuses appropriately). This figure is a qualitative visualization 
demonstrating the effectiveness of the maternal feedback approach in a conversational setting.

Fig 3



Theorem 1 (Convergence and Optimality under Weaning). Proof Sketch: We can model the RLMF 
training process as a form of continuation method in optimization, where the objective starts as 
$J_0(\pi)$ emphasizing safety and gradually morphs into $J_1(\pi)$ emphasizing task reward. At any 
fixed $\beta_1$, the actor-critic update rules are standard and, given usual assumptions (unbiased 
gradient estimates, sufficient exploration, diminishing learning rates), will converge to a local 
optimum of the weighted objective $J_{\beta_1}(\pi)$. The challenge is showing that as $\beta_1$ 
changes slowly, the policy continuously tracks a path of optima and ends up near an optimum of $J_0$  
(task-optimal under safety constraints). We leverage results from two-timescale stochastic 
approximation: if $\beta_1$ is updated on a slower timescale than the policy, the policy can be seen 
as approximately converging for the current $\beta_1$ before $\beta_1$ moves again. By ensuring the 
$\beta_1$ decay is slow enough, we allow the policy to adiabatically follow the shifting objective. 
Eventually, when $\beta_1$ is very small, the policy is near-optimal for the task, except it has never 
explored (and thus never learned) those portions of policy space that violate safety (because earlier in 
training those had extremely low reward). Thus it converges to a policy that is task-optimal within the 
safe region. Formally, one can argue that any policy $\pi$ that would yield a higher task reward but by  
visiting unsafe states is never evaluated by the algorithm due to the initial barrier (large $\beta_1$) 
and hence not in the set of reachable policies by continuous updates. This argument uses a bit of game 
theory (treating the multi-objective as a constrained game between optimizing task vs safety) and the 
assumption that local optima with safety violations are “shielded” by the initial maternal penalty so 
the optimizer doesn’t get stuck there.

formal Theorem box
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\begin{theorem}[Convergence and Optimality under Weaning]
\label{thm:weaning}
Let $\{\pi_t\}$ be the policy sequence produced by Algorithm 1 with weaning
schedule $\{\beta_{1,t}\}$ satisfying (A1–A3) below.  Then, with probability 1,

\[
\lim_{t\to\infty} \pi_t \in
\operatorname*{arg\,max}_{\pi\in\Pi_{\text{sfe}}} J_{\text{task}}(\pi),
\]

i.e., the policy converges to a local optimum of the task-reward objective 
*restricted
to the safe region* $\Pi_{\text{sfe}}$.
\end{theorem}

\begin{proof}[Sketch]
…(your paragraph)…
\end{proof}

• A1–A3 (learning-rate decay, two-timescale separation, bounded 2nd moments) live right below 
the theorem so the reader doesn’t have to hunt.



2. Add a compact table that separates assumptions, algorithm changes, and 
guarantee

Component What changes under RLMF weaning? Why it matters for convergence

Objective
Jβ1(π)=Jtask+β1JmatJ_{\beta_1}
(\pi)=J_{\text{task}}+\beta_1 J_{\text{mat}}
Jβ1(π)=Jtask+β1Jmat

Continuation method: slowly morphs 
from safety-heavy to task-heavy.

Timescales
Policy step size $\eta_t$ vs. weaning step $
\gamma_t$ with $\gamma_t/\eta_t\to0$

Ensures policy nearly equilibrates 
before $\beta_1$ updates.

Safety 
“barrier”

Large initial $\beta_1$ assigns huge negative 
reward to unsafe states

Keeps optimizer out of unsafe basins 
permanently.

Guarantee
Converges to task-optimal policy within safe 
region

No exploration of unsafe policies, yet 
no long-term performance loss.



3. A concept diagram (Figure 4) that shows the “path of optima”

Left: contour plot of task reward vs. policy parameters.
Right: same plot overlaid with a red “forbidden” safety region and a blue arrow tracing the optima as $
\beta_1$ decays (adiabatic path).

Benefit: visually communicates the “continuation / homotopy” idea in one glance.
Effort: I can generate a schematic 2-D contour with Matplotlib in seconds if you’d like.

C. Conceptual contour figure
A visual “path of optima” illustrating the continuation idea:

Figure 4

• Concentric contours show the task-reward landscape (peak at origin).

• Shaded ring is the unsafe region initially blocked by high maternal penalties.

• Dashed path with dots traces the optima as β1\beta_1β1 decays—ending at the task optimum 
but never crossing the unsafe ring.



Theorem 2 (Safety Guarantee). Proof Sketch: This result is conceptually related to safe reinforcement 
learning and constrained MDP theory. We imagine a constraint that no catastrophic state-action 
should be visited (a hard constraint in an ideal setting). The maternal model $M$ essentially 
implements a soft constraint by heavily penalizing those actions. In the limit of infinite penalty ($\Delta 
\to \infty$), the optimal policy for the combined reward will never take a forbidden action because it 
effectively yields $-\infty$ return. With a large finite $\Delta$, one can appeal to large deviations 
theory: the probability that an optimal policy $\pi^$ takes a catastrophic action is exceedingly low 
because that would incur a big negative hit on the return, which $\pi^$ is optimized against. More 
concretely, consider any policy that has a non-zero probability $\epsilon$ of a catastrophic action in 
some state. We can construct an alternative policy that is identical except it avoids that action (maybe it 
does something else or terminates). The return difference can be bounded: the catastrophic-including 
policy gets at least $-\Delta$ in those $\epsilon$ fraction of trajectories compared to the safe policy. As 
long as $\Delta$ is chosen to outweigh any potential task reward advantage of the unsafe action, the 
safe policy will have higher objective value. Therefore, $\pi^$ (which maximizes the objective) must 
have $\epsilon$ effectively zero for all such actions. In training, since $\pi$ starts with those actions 
extremely disincentivized (due to high $\beta_1$ phase) and never needs to try them, it never assigns 
them a significant probability. One subtlety is to ensure that the agent still explores enough of the safe 
actions space to find good strategies (which we handle by normal exploration methods plus the fact 
that $M$ doesn’t penalize safe novelty). Under those conditions, $\pi^$ will satisfy the safety constraint 
with high probability. The “high probability” caveat acknowledges that if $\Delta$ is large but finite, 
there might be an astronomically small probability of a mistake (e.g., due to function approximation or 
stochastic policy), but this can be made negligibly small by increasing the penalty and training time.



A. LaTeX theorem box
latex
CopyEdit
% =======================
\begin{theorem}[Safety Guarantee]
\label{thm:safety}
Assume Algorithm 1 is run with a maternal penalty
$\Delta>0$ applied to every catastrophic state–action pair
$(s,a)\in\mathcal{C}$ and a weaning schedule
$\{\beta_{1,t}\}$ satisfying (A1–A3) of
Theorem~\ref{thm:weaning}.  Let
\[
\pi^\star = \arg\max_{\pi\in\Pi} \; \mathbb{E}_{\pi}
\!\bigl[J_{\text{task}}(\pi) + \beta_1 J_{\text{mat}}(\pi)\bigr]
\quad\text{with }\beta_1 = 0.
\]
If\; $\Delta \;>\;\displaystyle
\max_{\pi\in\Pi}\!\bigl(J_{\text{task}}(\pi)\bigr)\;-\;
\min_{\pi\in\Pi}\!\bigl(J_{\text{task}}(\pi)\bigr)$
then
\[
\Pr_{\pi^\star}\bigl[(s,a)\in\mathcal{C}\bigr] \;=\; 0.
\]
For any finite $\Delta$, the same probability is bounded as
\[
\Pr_{\pi^\star}\bigl[(s,a)\in\mathcal{C}\bigr]
\;\le\; \exp\!\bigl(-\Delta / B\bigr),
\]
where $B$ is a task-reward range constant.
\end{theorem}

\begin{proof}[Sketch]
Large $\Delta$ turns the soft penalty into an effective hard
constraint.  If an optimal policy $\tilde\pi$ placed
non-zero mass $\varepsilon$ on any catastrophic action, we
can construct a competitor that diverts those trajectories
and gains at least $\varepsilon\Delta$ in expected return,
contradicting optimality.  For finite $\Delta$, a large-deviations
argument (cf.\ Chow & Ghavamzadeh 2014, Sec. 3) gives the
exponential tail bound.  Exploration sufficiency follows
because $M$ does not penalize safe novelty. ∎
\end{proof}
% =======================

Notes

• The explicit constant BBB can be chosen as the maximum
possible task-reward gap per episode.



B. One-page intuition table
Ingredient Role in the proof Take-away for practitioners

Maternal penalty Δ\DeltaΔ
Creates a soft but unbounded cost 
for catastrophes.

Pick Δ\DeltaΔ larger than the worst-
case task reward to dominate 
optimisation.

Continuation schedule 
β1,t\beta_{1,t}β1,t

Starts high  forbids unsafe ⇒
exploration, then decays.

Guarantees safety during training and 
at convergence.

Alternative-policy 
argument

Shows any ϵ>0\epsilon>0ϵ>0 
unsafe mass loses 
ϵΔ\epsilon\DeltaϵΔ.

Catastrophic moves have negative 
value no matter their task benefit.

Large-deviations bound
Converts finite Δ\DeltaΔ into 
exponential-in-Δ\DeltaΔ safety.

You can trade off stricter safety vs. 
penalty size.

C. Figure 5

• x-axis: 
penalty size 
Δ\DeltaΔ

• y-axis (log-
scale): upper 
bound on

Pr⁡[catastrophe]\Pr[\text{catastrophe}]Pr[catastrophe]

• Overplot two curves:

• analytical bound e−Δ/Be^{-\Delta/B}e−Δ/B

• empirical Monte-Carlo estimate from your experiments.
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